
A Laboratory Introduction to git and GitHub
P. K. G. Williams (peter@newton.cx)

October 17, 2022
version c5ca452

mailto:peter@newton.cx

Typeset in EB Garamond and Adobe Source Code Pro using LATEX.

Introduction 3

Introduction
Welcome to the git lab! This manual aims to help you learn the fundamentals of this awesome tool by
walking you through its everyday functionality. You’ll also learn about the popular commercial website
GitHub, and how the two fit together.

Thismanual includes a lot ofmarginal notes This is an example marginal note!. They are intended to provide extra context and information
for reference, but you don’t need to read them for the core lab activities.

Here are some basic guidelines for this lab:

• We strongly recommend that you actually type out the commands shown here, Learning git is like learning an
instrument or a language. There are
certain concepts to master, but there’s
also just an element of practice. Unix
pros talk about finger memory: you
need to type a command a few hundred
times to start really using it fluently.

and not just read the
commands passively.

• This lab is best done with a partner. However, please try to switch off between who’s “driving” the
keyboard and who’s watching and commenting.

• Ask for help! That’s the whole point of doing this lab as a group instead of on your own. If you
and your partner get stuck, trying asking the group next to you, or Google.

• Of course, with computers sometimes things go wrong even if you’ve done everything right — if
you see a truly strange error message, particularly one associated with a non-git command, get the
attention of an expert.

Notation in this manual
Important terms will be introduced in italics. Computer-y words will be written in a monospace font
like this. Commands to type in the terminal in are presented with commentary like so:

$ echo hello world Say hello.

Don’t type the dollar sign, which indicates the terminal prompt.

Often you’ll have to fill in part of a command yourself. Substitute {sample text}with a value that you

4 Introduction

choose or figure out for yourself. For instance:

$ echo "{the current year}" What’s printed in this manual.
$ echo "2022" What you actually type.
Don’t type the braces!

WithTake special care with punctuation and
similar letters — command-line

interfaces are finicky. The characters '
(single vertical quote), ` (backtick),

and " (double vertical quote) may be
similar but they are all interpreted

differently by the computer. Likewise
for l (the letter ell), 1 (the digit one),

| (pipe symbol), and so on.

the exception of the leading dollar signs and{sample text}, you’ll get your best results if you type
every command exactly as shown in this manual.

Other actions you that you should perform on your computer are typeset like so:

Start your code editor.

This manual also includes questions to can check your understanding. Let’s start simple:

What is your name?

No one’s going to grade you, but it will help learning if you actually think about these questions and
write down your answers!

git clone 5

Part 1: Command-Line Basics

Topic 1: git config
Before The git program that you run from the

terminal is a sort of “Swiss Army knife”
tool that provides many commands
that do all sorts of different things. The
command that sets up configuration is
(quite sensibly) git config.

we really get started, we need to set up some important configuration. We can do this with the git
program itself. Run these commands:

$ git config --global color.ui auto Use colors in printed output.
$ git config --global alias.ci commit A useful shorthand.
$ git config --global alias.s status A useful shorthand.

For git will embed your name and email
address in all of its logs of your activity,
so it’s important to declare them! The
values you enter here will be preserved
permanently. For email, it’s best to use
a long-lived, public address.

the next two, remember to replace the sample text with real answers. Don’t type the braces, but do
type the double quotes.

$ git config --global user.name "{your name}" Tell git your name.
$ git config --global user.email "{your email address}" Tell git your email.
Nowwe can get started for real!

Topic 2: git clone
We’ll There are two git commands to set up

a repository: git init, which creates a
new, empty repository; and git clone,
which duplicates an existing one. We
use the latter so that we have some files
to work with right off the bat.

get started by setting up a git repository (“repo”) to play with. This is the directory containing your
actual content (i.e., files) as well as git’s supporting data.
$ cd Move to home directory.
$ mkdir gitlab Create work directory.
$ cd gitlab Move into it.
$ git clone https://github.com/pkgw/bloomdemo.git Clone an existing repo.
What file(s) did git just create?
$ ls Examine files.
Let’s navigate into this directory and examine its contents.

6 git clone

The code here uses a tool called a
Bloom filter to let you check whether a

words is found in the English
dictionary. Bloom filters make

mistakes, but in a one-sided way: if a
word is in the dictionary, a Bloom filter

will never say that it isn’t; but
sometimes a Bloom filter will think

that a word is in the dictionary when it
really isn’t. Why would you want that

behavior? Bloom filters are much faster
than filters that are always correct, and
sometimes it’s good to trade accuracy

for speed. Don’t worry: the details
aren’t important here. If you have extra

time and are curious, read the file
bloom.py.

$ cd bloomdemo Enter repository directory.
$ ls Examine files again.
$ ls -la Detailed listing of files.

By the way, in the final command above, the letter after the dash is an ell, not a one.

The detailed file listing should reveal a hidden directory, used by git to store its supporting data. What
is this directory called?

Your cloned repository is both self-contained and self-sufficient. You can do anything youwant to itwith-
out having to talk to GitHub again (without even needing an internet connection, in fact), and nothing
you do will affect the GitHub version unless you explicitly attempt to synchronize the two.

You can see a gory listing of git’s housekeeping files with:
$ find . -print Print all file names.

Finally, to prepare for some concepts that come later in this lab, run this command:

$ git branch print-my-name We’ll come back to this later.

Testing your Python
The repository we cloned is named bloomdemo. Let’s learn a bit more about it:

$ cat README Print the bloomdemo repository’s README.

TheREADME says that this repository contains Python code. Before you go any farther, let’s check that
your Python installation works:

$./chkdict barn bern birn born burn Check reality of words.

Whenyou run the above command, you should get a report aboutwhether certainwords are in the dictio-
nary. You should not get any big honking error messages. If you do, please consult with an expert.

git status, git checkout 7

Topic 3: git status, git checkout
Fundamentally, Now, in some circumstances HEAD

isn’t chronologically the most recent,
but for now that’s the best way to
think about it.

all git does is track changes to the files in your repository. It compares the files on disk,
the working tree, with a recent snapshot of their contents. git stores many of these snapshots, each of
which is called a commit. The most “recent” snapshot, in a sense, is known as theHEAD commit or just
HEAD.

Let’s see how this process works.
Not sure how to open files in a code
editor? Ask your partner or one of the
experts!

Open the file chkdict in your code editor. Find the line that includes the words "MIGHT
BE". Edit it to add the words "... or it might not" within the quotation marks.

Save the file when done.

If everything worked, the output of the program should change when you rerun the program:

$./chkdict barn bern birn born burn Check that change stuck.
Next we’ll use git status to learn about local modifications to the working tree compared to the most
recent snapshot:

$ git status Check modification status.

The git status Newer versions of git use git restore
instead of git checkout here. The new
name was created because
git checkout did two very different
jobs, as we’ll see later. But not that
many computers have a new enough
version of git installed just yet.

command prints out several pieces of information. Ignore most of them for now. But
you should see git highlight that chkdict has beenmodified. It should also tell you how to discard your
changes if you decide you don’t like them. You can do this with the git checkout command:

$ git checkout chkdict Discard changes to chkdict.
$./chkdict {some words} Check that change is gone.
$ git status Check modification status.

Your change should be gone, and git should report that your working directory is If your working directory isn’t clean,
then it is, appropriately, dirty.

clean.

Does git go so far as to restore themodification timestamp of chkdict? You can use ls -l to check.

8 git add, git commit

Let’sIf you have something that already
works, the chief enemy of progress is

the fear of breaking what you do have.
You will truly have mastered the Zen of

Git when you gleefully shred your
most precious files without a care in

the world.

pause here. The ability to discard your changes is profoundly important and immensely powerful. A
huge amount of progress stems from one basic operation: “Let’s try this and see if it works.” Git makes
it safe to try things because it makes it easy to revert to known-working code.

These snapshots also mean that git is a nearly disaster-proof backup tool. If you have an up-to-date copy
of your .git directory somewhere, you can probably recover your files.

$ rm dictbf.dat.gz Remove important file.
$./chkdict barn bern birn born burn Check that program fails.
$ git status Check modification status.
$ git checkout dictbf.dat.gz Restore deleted file.
$./chkdict barn bern birn born burn Check that program is healed.
$ pwd Check your directory.
$ rm -fv *.py *.pyc *.gz *dict* README Type carefully!
$ ls -la Not quite everything gone.
$ git checkout . Bring it all back.
$ ls -la Huzzah!

The saved commits in the .git directory guard against many kinds of blunders.Many developers have a saying that
inverts the point of view: if it isn’t in

Git, it didn’t happen.

When you add in git’s
ability to synchronize repositories between different computers, you get almost complete invulnerability
to loss of the data stored in the repository.

Topic 4: git add, git commit
If youwant to protect a file, gitneeds to be tracking it. This doesn’t happen automatically. The following
commands create a new file called mynewfile and then delete it. Because we haven’t told git to track
mynewfile, we cannot recover it:

$ echo hello >mynewfile Create a new file.
$ git status Check modification status.
$ rm mynewfile Remove it.
$ git checkout mynewfile There’s no saving that one.

Commits are the way that git remembers your files, so we should learn how to make them! Making

git add, git commit 9

commits in git is a two-step Wewon’t go into why this two-phase
approach was chosen, but there are
good reasons.

process. First, you have to identify which changes you want to commit by
staging them with the git add command. Then you actually create the new commit with git commit.
We’ll demonstrate this.

Open the file chkdict in your code editor and recreate the change you made before. Save
the file when done.

Now We’ll see below that git add can also
teach git about new files. This is an
example of a common annoyance with
git: the same command will often do
very different things depending on
how exactly you run it.

run these commands:

$./chkdict barn bern birn born burn Validate your change.
$ git status Check modification status.
$ git add chkdict Stage the change.
$ git status Note change in output.

How does git describe the status of chkdict after you have “added” it?

To finalize the commit, run:

$ git commit Commit the staged changes.

When Generally speaking, more sophisticated
and organized projects will have more
detailed policies about what should go
in each message. I find it helpful to
identify the section or subsystem that
the commit most strongly affects —
that’s the bit before the colon— and
then tersely summarize what you did.
Additional lines should report why.
The rule of a gold-plated commit
message is that someone
knowledgeable should be able to
recreate your changes based only on
the message.

you run git commit youwill be prompted towrite a commitmessage. There are no rules about the
message contents, but every commitmust have one. Here, I suggest a one-linemessage of this form:

chkdict: change the "MIGHT BE" message for fun

You also use git add to tell git to start keeping track of a new file.

$ date >mynewfile Create a new file.
$ git status Check modification status.
$ git add mynewfile Register it.
$ git status Note change in output.
$ git commit -m "{your message}" Commit the staged changes.
Here we’ve used a new option to git commit: the -m option, which lets you write the commit message

10 git add, git commit

right on the command line. You’ll probably be mostly writing short messages, so the -m option can be a
big convenience.

Say you had done the above steps through git add newfile and then decided you actually didn’t want
to commit the new file. What command would you run to reset things? (Hint: git status is informative.)
What happens to newfile in this case?

There are a couple of other ways to “stage” changes to be committed. For instance, if we decide we don’t
want to keep mynewfile around anymore, we need to use git rm to register the removal:

$ rm mynewfile Remove our file.
$ git status Check modification status.
$ git rm mynewfile Tell git we want to remove it.
$ git status Note change in output.
$ git commit -m "{deletion message}" Commit the staged changes.

AnThis is very important if, for example,
you accidentally commit a password
into a repository: even if you make a
commit to remove the information,
other people can still recover your
password. There are ways to fully

delete such information, but we won’t
get into them here.

important point is thatgitnever forgets anything, so even if youdelete afile froma repository, its contents
are still stored and recoverable.

There’s also a git mv command. It’s the equivalent of an add and an rm together. Both this and git rm
will perform the specified moves and/or removals on relevant working-tree files if they haven’t already
happened.

Finally, git commit has a useful option: the -a option, which automatically does the equivalent of
git add on all of your modified files. It does not auto-add untracked files in your working tree. Using
the standardUnix syntax for combining command-line options, we get a very useful pattern, exemplified
here:

git log 11

$ date >>README Modify the README.
$ git commit -am "README: add a timestamp" Add and commit.

Once Most people starting out with coding
and git’ing tend to evolve towards
writing shorter and shorter messages
for larger and larger commits, usually
converging in one large commit made
at the end of the day labeled “Update.”
I strongly, strongly urge you to try to get
into the habit of committing in small
chunks with thought-out log messages,
even if it may take a while for the payoff
to become clear. The fundamental
reason is that smaller commits are
easier to understand. By breaking your
work into smaller pieces, it’s easier to
reason about its correctness and overall
design. This is true both as you write
new code, and as you evaluate old code
— every experienced programmer can
tell you about revisiting their own
year-old work and having no idea what
they were thinking when they wrote it.
This path also goes both ways: the
effort that you spend reasoning about
how to break down your code into
commits will help deepen your
understanding of how to structure
software in general. The more you do
it, the easier it will get, and the better
programmer you’ll be.

you develop your finger memory, this is the quickest way to make commits.

Topic 5: git log
If you find yourself wanting to review your previous commits, git log is the command to use.

$ git log Show the commit history.

The git log command will open up a “pager” program as described in an Appendix. It shows you a
series of commits, each associated with an author, a date, and a message. Each commit also has a commit
identifier, which is the string of 40 random-looking characters. You should see your own recent commits
at the top of the output.

On what date was the very first commit made in this repository? You may want to consult the table of
keystrokes that control the pager on page 27.

Find a commit whose message contains the word “consuming.” On what date was it made?

Every distinct git commit in the universe has a unique identifier. The identifiers look random but are
uniquely determined by the commit’s files and history.

12 git show, git diff, git grep

(Optional.) Commit identifiers are 40-character hexadecimal strings, with each character having 16
possible values (0–9, a–f). If you made one new commit every second, about how many Hubble times
would need to elapse before you used all possible identifiers? The Hubble time is about 4.3 × 1017 s, and
210 ≈ 103.

TheThis is an enormously important aspect
of git — it makes it easy not just to

view commits, but to understand the
changes that happened between

different commits. GitHub’s web
interface makes these things even easier.

git log command can also show you which files were changed in each commit relative to the one
before. This diffstat mode shows howmany lines were added and removed from each file.

$ git log --stat Show log, with change statistics.

In the most recent commit to modify the file INSTRUCTIONS, how many lines were added? How many
removed?

Topic 6: git show, git diff, git grep
TheThe diff format is yet another

convention that shows up throughout
the Unix ecosystem.

command git show will show the set of changes associated with a commit in diff format. It should
be fairly intuitive to grasp, especially with the helpful colorful highlighting that git gives you:
$ git show 09933f Show the named commit in the pager.

Above,In any given project, five or six
hexadecimal digits is almost always

enough to uniquely name a commit.
Optional exercise: howmany different
combinations of six hexadecimal digits

are there?

we’ve named a commit based on the beginning of its hexadecimal identifier. You already know
the name of another commit: HEAD.

$ git show HEAD Show your most recent commit.

git show, git diff, git grep 13

The diff for this commit is fairly simple since it was a trivial example you authored just a little while
ago.

Use git log to find the commit that adds code that uses gzip to compress the Bloom filter data file, then use
git show to view the commit diff. What Python module is needed to add gzip support?

The Bloom Filter False-Positive Rate
Rather than showing an existing commit, the git diff command shows the difference between yourwork-
ing tree and the staged set of changes— not the most recent commit. We’ll demonstrate this with a longer
example.

Open the chkdict file in your code editor.

Towards The false-positive rate is the average
frequency with which the Bloom filter
will say that a word is in the dictionary
when it really isn’t. If fp = 0.01, the
filter will think that 1% of non-words
are actually words, on average. If fp =
0.9, the filter will think that 90% of
non-words are actually words. This
parameter is useful because there’s a
tradeoff: filters with larger
false-positive rates are less accurate but
more efficient.

the end of the file you will see that it sets a variable named fp. This variable is the “false-positive
rate” for the program’s Bloom filter.

Modify chkdict to print out fp before it reports the filter results for each word. To do this
you need to add one line of code to the chkdict file. Save the file when done.

$./chkdict {some words} Check everything works.
$ git diff Review unstaged changes.
$ git add chkdict Stage for committing.
$ git diff Review unstaged changes.

What is the reported false-positive rate?

But wait a minute! A false-positive rate is a probability. Your program should have printed out a negative
number, which is not a legal probability.

14 git show, git diff, git grep

The false positive rate came from a function called fprate. You can useTechnically git grep and the search
feature of less use a Unix formalism
called regular expressions or regexes.

These are powerful and cool
constructs, but for our purposes, you
can just type what you’re looking for.

git grep to locate its definition:
this command searches for a string in the working tree files.

$ git grep 'def fprate' Locate instances of “fprate”.

The repository that you checked out has had a bug intentionally inserted into this function.

Open the file identified by git grep. Find the definition of the fprate function. Remove
the bug according to the instructions in the file.

$./chkdict {some words} Check everything works.

What is the correct false-positive rate?

(Extra credit.) Use git checkout to discard your fix, then the new command git blame to identify the
commit that introduced the bug. Which one was it? When done, re-fix the bug. The additional new
command git help blame may come in handy.

The next set of commands will work through some of the permutations of having both staged and un-
staged modifications in your working tree. Recall that above we ran git add on our change to make
chkdict print out the false-positive rate, but we didn’t run git commit.
$ git status Check modification status.
$ git diff Review unstaged changes.
$ git commit Commit staged changes.

What change(s) was/were just committed?

git show, git diff, git grep 15

If you were to run git diff now, after the git commit, what would you see? Try to guess the answer without
just running the command!

$ git diff Review unstaged changes.
$ git add {remaining file(s)} Stage for committing.
$ git diff --staged Review staged changes.
$ git commit Commit staged changes.
$ git status Check modification status.

Here, This contrasts with plain git diff,
which examines the differences
between the working tree and the
staged changes.

git diff --staged is a different mode that examines the differences between the staged changes and
HEAD. If everything has gonewell, you’ll have a cleanworking tree, a new feature inchkdict, and a fixed
bug. You can nowmuck about with the working tree however you want, confident that your important
fixes won’t be lost.
$ pwd Double-check your directory.
$ rm -fv *.py *.pyc *.gz *dict* README Type carefully!
$ ls -l Confirm file removal.
$ git checkout . Bring them all back.
$./chkdict {some words} Verify correct FP rate is produced.

16 git branch, git checkout (redux)

Part 2: Collaboration: Foundations

Topic 7: git branch, git checkout (redux)
YouA commit name is all you need to

reconstruct the entire project history
back to its inception: the named

commit embeds the unique identifier
of its parent(s), which embeds the

identifier of its parent(s), and so on. A
branch’s history is the set of all
commits that have gone into it.

were just told that in git, a “branch” is just name that refers to some specific commit, the branch head.
You can store data for many different branches at once, but there is only one current branch: the current
branch is the one that the working tree and HEAD are synchronized with. The git branch command
prints out the names of the branches in your repository:

$ git branch List branches.

The current branch is denoted in the output of git branch with an asterisk.

Our repository has only one branch. What is its name?

WhenOne of the reasons that git is so reliable
is that commits involve appending new

information to the repository but
almost no rewriting of existing

information, which is generally more
dangerous. When it does rewrite a file,
like the branch head file, the operation
is isolated andminimal. This is a design
practice to keep in mind when writing

your own data-processing tools.

you run git commit, git creates a new commit in its database, then updates the the current branch
to point to that new commit. The current identity of the branch head is stored in a simple text file:

$ cat .git/refs/heads/main Manually print the main branch commit id.
$ cat .git/HEAD Manually print out the branch that HEAD references.

Creating new branches is simple. In fact, we’ve already done it — remember how we ran git branch
print-my-name back when you checked out the repo? Now we’ll follow up on that and switch branches
to activate it with git checkout—another case of one command doing double duty, like git add before.
If youhave anyuncommitted changes in yourworking tree, commit themor discard thembefore running
the git checkout command— otherwise you may get errors.

$ git status Check modification status.
$In newer versions of git, this use of

git checkout is superseded by
git switch.

git checkout print-my-name Switch to print-my-name branch.
$ git branch List branches.
$./chkdict {some words} Verify that FP rate is not printed.

git branch, git checkout (redux) 17

Here, git checkout has If you had any uncommitted changes,
git checkout would have either
preserved them or refused to run if it
couldn’t.

done two things: it’s updated information to say that the current branch is now
the one named print-my-name, not main, and it’s synchronized your working tree to match print-my-
name.

Use git log to look at the history of your current branch. The commits that you made in Part 1 shouldn’t
show up. Have they been lost?

Let’s create a commit on this new branch. We can do so using the same commands we’ve been using all
along—because we’ve changed the active branch to print-my-name, that’s the one that will be updated,
not main.

Edit the top of the chkdict to add a line that prints your name after all of the import
statements. Save the file when done.

Below, we’ve started assuming that you’re getting the hang of things and don’t need to see every git add
and git commit command written out.

$ {review and commit your change} Commit your change.
$ git log --oneline Summarize history for current branch.
$ git log --oneline main Summarize history for main branch.
$ git checkout main Switch to main.
$./chkdict {some words} Verify that FP rate is printed.
$ git checkout print-my-name Switch to print-my-name.
$./chkdict {some words} Verify that your name is printed.
We’ve also slipped in another argument to git log, called --oneline, that produces a terser form of out-
put.

You should see that the two branches start out with the same history (at the bottom of the log listings),
but then diverge: they have commits in common, but both branches include commits that the other
doesn’t.

18 git merge

Topic 8: git merge
TheRecall that main contains your change

to print the correct Bloom filter false
positive rate, while print-my-name

doesn’t, because we started it from the
originally cloned snapshot. Instead,

print-my-name has a change to print
out your name in the chkdict

program.

git merge command automates the process of merging one branch into another. Here we’ll merge
your print-my-name branch into your main branch.

$ git checkout main Switch to main.
$ git merge print-my-name Merge this branch into main.

The git merge commandwill prompt you to write a message for themerge commit. You can usually just
use the default.

Running the merged code should demonstrate the effects of both sets of changes:

$./chkdict {some words} Verify that both your name and FP rate are printed.
This merge could happen automatically because the two sets of changes did not edit the same part of the
same file.

Resolving Merge Conflicts
If two different branches domodify the same part of the same file in different ways, you have a dreaded
merge conflict.

If a conflict arises, git leaves your working tree in a special funky state. The conflicting files have special
markers inserted to point out where the conflicts are.Things are a little bit simpler than you

might fear since the various commands
will tell you the necessary steps as you

go through them.

You must decide how to resolve the conflicts, edit
the files to implement the resolution, mark the files as dealt with using git add, and then finally git com-
mit when everything is fixed.
We’ll work through a merge conflict using some secret branches that came along with our clone:

$ git branch conflict-demo origin/main New branch with pristine files.
$ git checkout conflict-demo Switch to conflict-demo branch.
$ git show origin/goodbye-option View changes in the specified branch.
$ git show origin/no-skipmisses-option Likewise.

Now let’s try merging both branches into conflict-demo:

git merge 19

$ git merge origin/no-skipmisses-option Merge in no-skipmisses-option.
$ git merge origin/goodbye-option Likewise.
At this point, git should report a conflict. The output of the commands isn’t incredibly clear on this
point, but both branches modified the same portion of the chkdict file, so git doesn’t know how to
proceed.

$ git status Report merge/conflict state.
Behind the scenes, git has edited the file chkdict and added conflict markers indicating the problematic
region that was edited in both branches. These consist of a long row of “<<<<”, the final text found in
one branch, then “====”, the final text from the other branch, and finally “>>>>”.

Open up chkdict in your code editor and search for these conflict markers.

Your The example here tries to keep the
conflict minimal. One branch adds a
command-line option, and another
branch removes one, so they both edit
the same stanza of option-handling
code at the beginning of chkdict. To
resolve the conflict, you first have to
decide what the merged code should do
— it seems clear that it should accept
the new argument and remove the old
argument. You then need to
implement that solution by editing the
code. To implement the solution you
should use the sample text from the
two branches as a reference, but the
best implementation might not look
exactly like either version.

mission tofindall conflictmarkers and edit thefiles to somehowdowhatbothbranches intended.

Resolve the conflict in chkdict. Save your work.

After you’re done, all of the conflict markers should be gone from your files. You can then git add and
git commit as usual— git uses an internal flag to realize that this commit represents a merge and not just
a regular commit.

$ git add chkdict Stage the fix.
$ git diff --staged Examine the changes of the final merge.
$ git commit Commit the fix.
$ git log Review commit history.

20 git merge

What does the commit history of the conflict-demo branch now look like, as a graph?

8.1 Manipulating Branches
Thegit branch commandprovides tools formanipulating branches. You cando things like rename them,
copy them, and so on.

A common workflow is to create a new branch for each feature that you work on — called a “feature
branch.” Once the feature branch is merged into the main branch, you can tidy things up by deleting
it:

$ git branch -d print-my-name Delete this branch.
TheYou can use the -Dmode if you’re sure

that it’s safe to delete a branch.
-dmode of git branchwon’t let you delete a branch unless git is confident that the commits of that

branch are replicated elsewhere.

git remote, git fetch 21

Part 3: Collaboration: GitHub

Topic 9: git remote, git fetch
Each git repository stores a list of other repositories that it knows about, known as remotes. You can
download updates from remotes and push updates to them. Every cloned repository starts with a re-
mote called origin, which you’ve probably been seeing mentioned by various tools over the course of the
lab.

You can learn about your remotes with the git remote command.

$ git remote List named remotes.
$ git remote show origin Show details about origin.
Each remote is associated with remote branches, which the git remote show command just listed for us.
The git branch command will also list them if you give it the -a (“all branches”) option:

$ git branch -a Show all branches.

You can’t make commits on these branches yourself. However, you can download updates from the
remote with the git fetch command. We can run it here, but since I haven’t craftily updated origin since
this lab started, all you’ll see is silence, indicating that there are no new commits:

$ git fetch origin Update remote branches for origin.

Linking With Your GitHub Account
We’ll The key thing about a fork is that you

can do work on my code without
needing to ask me for permission to
start making changes. If you later want
to submit your changes, the two
repositories will nonetheless share a
common git history so that they can be
merged easily.

now get your repository talking to your GitHub account. First, we need to fork—duplicate— the
origin repository.

Navigate your browser to https://github.com/pkgw/bloomdemo/. Click the “Fork”
button at the top-right of the screen. Once you’re looking at your fork, click the “Clone or

Download” button and copy the clone address to your computer’s clipboard.

https://github.com/pkgw/bloomdemo/

22 git push

Nowwe’ll tell your repo about your fork on GitHub, registering it as a remote named mine:
$ git remote add mine {GitHub clone address} Register a new remote
$ git fetch mine Pull down its current status

Topic 10: git push
To share changes we push them to a remote. We’ll create yet another branch with some quasi-nonsense
changes:

$ git branch graduation origin/main New branch with pristine files.
$ git checkout graduation Switch to conflict-demo branch.
$ mkdir alumni Make a directory.
$ date >alumni/{your-github-username}.txt Create your very own file.
$ git add alumni Register new directory with git.
$ git commit -m "Git graduation." Commit

TheOf course, git push also uploads all of
the needed backing data as well.

command git push copies a branch from your local repository to a remote. The syntax with a colon
shown below can be used to change the name that the branch will be given on the remote.

$ git branch -a List all branches.
$ git push mine graduation Publish the changes.
$ git push mine main:experiments Publish our main work as experiments.
$ git branch -a List all branches.
$ git remote show mine Show details about mine.

What’s different the second time you run git branch -a?

You’ll see that git prints some messages about creating a pull request. We’ll ignore them for now.

git pull 23

Reload the GitHub webpage for your fork of the bloomdemo repository. In the “Branch:”
dropdown menu, you should see your new graduation branch. Click on the commit

message (“Git graduation.”) to see your change as displayed by GitHub.

Your changes are now available to the wide world!

Issuing a Pull Request
If you’re just working on a personal project, GitHub already adds value: above all else, it backs up your
repository offsite. Where it really shines, however, is how it enables decentralized development. Specifi-
cally, GitHub pull requests (PRs) Really, it would be more accurate to

call themmerge requests. GitLab.com is
a service very similar to GitHub that
does this.

let you submit changes to repositories that you don’t own.

Click the big green “Compare & pull request” button associated with your graduation
branch. You can attach a message to your pull request — in normal usage, this would

summarize what changes are in your branch, and why.

Once the first few pull requests arrive, the lab leader will demonstrate how they are
reviewed and handled. In the meantime, you are encouraged to click around the different

elements of the GitHub PR user interface!

Topic 11: git pull
There is a git pull command that somewhat mirrors git push. But really, git pull is just a combination
of git fetch and git merge.

Wait for the instructor to merge a few pull requests into the main repository.

Now It can be tricky to merge changes if
your local tree is dirty. Before pulling,
we recomend doing a git status and
cleaning up any uncommitted or
unstaged changes.

that your origin repository has seen some changes, let’s incorporate them locally:

$ git checkout main Switch to main branch.
$ git pull origin Fetch and merge any changes from origin.
$ ls alumni See who’s graduated!

24 git pull

Grand Finale
Having successfully uploaded our work to the cloud, we can now shred our local files without worry-
ing.

$ cd .. Move to gitlab directory.
$ pwd Confirm your directory.
$ rm -rfv bloomdemo Destroy all of your work!
$ ls -la Confirm it’s gone.
$ git clone https://github.com/pkgw/bloomdemo.git Clone the main repository.
$ cd bloomdemo Move into it.
$ git remote add mine {GitHub clone address} Register our fork.
$ git branch -a List all branches.
$ git fetch mine Fetch our fork.
$ git branch -a List all branches.
$ git merge mine/experiments Restore our changes.
$./chkdict {some words} Confirm our changes.

With a few short commands, you were able to recover the work that you did during this lab — not just
the files themselves, but the history of what you did to them — even though we completely erased the
directory in which you did all of the work. I hope you’re impressed!

Recap
That’s the end of the lab! What should you take away from this all?

• From one angle, git is an excellent backup tool for your files.
• From another, it’s a freedom tool that lets you experiment in your projects, secure in the knowledge
that you can reset things to a known-good state if you decide that you messed up.

• It’s also an amazing collaboration tool that provides a tractable way for groups of people to work
together on projects in a decentralized manner.

git pull 25

• It is also, admittedly, a complicated tool with many esoteric features and a sophisticated underlying
theoretical model. We’ve barely scratched the surface of its capabilities.

If you don’t want to be chained to a paper copy of this lab manual, is there an electronic form? There is,
and it’s tracked in git, of course:

https://github.com/pkgw/git-lab

https://github.com/pkgw/git-lab

26 Unix Help

Appendix: Unix Help
To learn about command-line programs in Unix operating systems, you can try reading their “manual
page”s with the man command:

$ man find Learn about find.

When you run man, you enter a special subprogram called the pager, described in the nextAppendix. The
man program has its own manual page:

$ man man Learn about man.
Unix manual pages are notoriously uneven in their quality. This is especially true regarding git itself, un-
fortunately. Google is often a better resource for beginners. The information on the StackExchange.com
family of websites is usually very helpful.

https://stackexchange.com/

The Pager, “less” 27

Appendix: The Pager, “less”
The pager is a special Unix program for navigating lengthy textual output. It offers many more features
than the bare terminal. Because man, git, and many other Unix tools use it extensively, it is valuable to
learn a bit about it. Different programs can do the job of the pager, but by default your system uses a
Unix command called less.

Pager programs come from a time before the scrollbar was even invented. When using less, you should
not scroll your terminal window, because it won’t interact well with less’s internal scrolling. Instead,
navigate using the keyboard— The search and filter commands in

less use a special formalism called
regular expressions or regexes for
matching text. In general, you can just
type what you’re looking for and the
right thing will happen. ManyUnix
tools use regexes; they are just one of
the many interlocking technologies
that constitute the overall Unix
ecosystem.

less is controlled by commands that are mainly single keystrokes. Some
of these keys are:

Key Effect
q Quit the pager.

(Arrow keys) Navigate as you’d expect.
(Spacebar) Go forward a page.

b Go backwards a page.
< Go to the top of the file.
> Go to the bottom of the file.
/ Search (type in query, then hit Enter).
n Go to next search result.
N Go to previous search result.
& Filter (type in query, then hit Enter).
h Print help information.

When in doubt, just press q to quit the pager and return to your main terminal prompt.
Long-time Unix users might be used to
paging files with the more command.
The symmetry in the names is not
accidental — less is more!

You can run the less pager program like any other Unix command if youwant to read a file right in your
terminal:

$ less README Page the file README.

28 Quick Reference

git Command Quick Reference
There aremany commands that are not listed, and all of these commands can domuchmore than is given
in the summaries below.

Command Purpose
git add {files} Stage files for committing, or register new files.
git branch {name} {initial} Create a new branch pointing at initial.
git checkout {branch} Switch to a new branch.
git checkout {file} Restore a file to its HEAD state.
git clone {URL or path} Clone an existing repository.
git commit Make a new commit.
git diff Show changes between working tree and staged changes.
git diff --staged Show changes between staged changes and HEAD.
git fetch Fetch updates from a remote.
git grep {regex} Search for text in the repository contents.
git init Create a new empty repository.
git log Show commit logs.
git merge {branch} Merge another branch into the current one.
git mv {old} {new} Rename a git-tracked file.
git pull Combination of fetch and merge.
git push Publish updates to a remote.
git rm {file} Delete a git-tracked file.
git show {commit} Show the changes in a commit.
git status Report status of the working tree.

	git config
	git clone
	git status, git checkout
	git add, git commit
	git log
	git show, git diff, git grep
	git branch, git checkout (redux)
	git merge
	Manipulating Branches

	git remote, git fetch
	git push
	git pull

